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ABSTRACT 

We study the existence and uniqueness of solution of nonlinear fractional integro-differential 

equations of the Hammerstein type, using the iterative method under some suitable conditions 

in the Banach space. At the end, an example is given to illustrate the theory.  Keywords: 
fractional Hammerstein integro-

differential equations, Caputo fractional 

derivative, iterative method 

1. INTRODUCTION

Although the fractional calculus is not a new topic, but in 

the recent years, it has significant growth due to its 

applications in many areas of concepts of physics, 

mathematics and engineering, the interested reader can refer to 

the numerous recent works [7, 10-15] and references therein. 

Investigations on the existence and uniqueness of solution 

for fractional differential and integral equations have been 

recently presented in several literatures [1-5, 8-9, 16-17]. 

Using fixed point theorems is a basic technique in studying 

various equations [1, 6, 8, 16]. Anguraj et al. [3] studied the 

existence and uniqueness theorem for the nonlinear fractional 

mixed Volterra-Fredholm integro-differential equation with 

nonlocal initial condition. Balachandran et al. [5] discussed the 

existence of solutions of first order nonlinear impulsive 

fractional integro-differential equations in the Banach spaces. 

In [8], Gautam and Dabas established the existence and 

uniqueness results of solutions for class of an abstract 

fractional functional integro-differential equations with state 

dependent delay subject to not instantaneous impulse using the 

fixed point theorems. In [17], Wang proved the existence and 

uniqueness of solutions for a class of the nonlinear fractional 

differential equation with initial condition and investigated the 

dependence of the solution on the order of the differential 

equation and on the initial condition. 

In this work, we will use an iterative method to investigation 

the existence and uniqueness of solution of the following 

nonlinear fractional Volterra integro-differential equations of 

the Hammerstein type  

( ) ( )C C

0
D v ( ) = g( ) k( , ) G D v( ) d , [0,a] ,


   +           (1) 

subject to the initial conditions 

( j)

jv (0) = v ,   j = 0,1,...,m 1,−   (2) 

where for m, n  , m 1< < m−   , n 1< < n−   , <    and 

the fractional derivatives are considered in the Caputo sense. 

Also, G  is an increasing linear transformation on the Banach 

space x. 

2. PRELIMINARIES

In this section, we recall some basic definitions and 

necessary facts of the fractional calculus (for more details see 

[4] and [10]). Throughout of this paper, we consider the

complete metric space ( ,d)  which

[0,a]

d(h,g) = | h( ) g( ) |,max


 − 

for all h,g . 

The Riemann-Liouville fractional integral and the Caputo 

fractional derivative play main roles in fractional calculus, thus 

the definition of them will be expressed.  

Definition 1. The Riemann-Liouville fractional integral of 

order > 0  of a function v( ) , is defined as  

( )
1

0

1
( )( ) = ( ) ,   > 0,

( )

−
−

 I v v d
       


 (3) 

where   denotes the Gamma function. 

Definition 2. The Caputo derivative of fractional order 

0   for a function v( )  is defined by  

( ) ( )
m 1C (m)

0

1
D v ( ) = v ( )d ,

(m )

 −−   −  
 − 

where m = [ ] 1 +   and [ ]   denotes integer part of the real 

number . If 0= m  and the usual derivative (m)v ( ) of 

order m   exists, then C m( D v)( ) coincides with (m)v ( ) . 

Also, this definition implies that C (n) C nD v ( ) = D v( ) +  and

C D z = 0 ( z is a constant). 
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Proposition 1. Let , > 0    and m = [ ] 1 +    ff 
mv( ) C [0,a]  , then  

( )
( j)

m 1C j

j=0

v (0)
(i)  I  D v ( ) = v( ) ,

j!

−    −   

( )C(ii)  D I v ( ) = v( ),     

( ) ( )(iii)  I I v ( ) = I v ( ).  +   

 

Lemma 1. ([1])  Let m 1< < m−   , n 1< < n−    and 

< .   For  0,a ,  

 

(i) if  v( ) C 0,a  , then ( ) ( )C D I v ( ) = I v ( ),  −    

 

(ii) if  m 1v C 0,a−   and ( )  C D v ( ) C 0,a    , then        

( )  C D v ( ) C 0,a   .   

 

Proposition 2. Let , > 0   and m 1< < m−  , then  

 

( )( ) ( ) ( )
1 1( )

I a = a ,
( )

− +−  
−   −

  +
 

 

( )( ) ( ) ( )
1 1C ( )

D a = a ,  > m,
( )

− −−  
−   − 

  −
and  

 

( )( )( )
jC D a = 0,   j = 0,1,...,m 1. −  −  

 

The following lemma is a result of Lemma 1.3 in [9] which 

characterizes the space nC [0,a] .  

Lemma 2. Let 
0n .   The space nC [0,a]   consists of 

those and only those functions h  which are represented in the 

form 

  
n 1

n 1 j

j
0

j=0

1
h( ) = ( ) ( )d c ,

(n 1)!

−
−  −   + 

−
  

 

where ( ) C[0,a]     and jc  ( j = 0,1,..., n 1)−   are appropriate 

constants. Moreover,  

 
( j)

(n)

j

h (0)
( ) = h ( ),  c =   ( j = 0,1,..., n 1).

j!
   −  

 

 

3. EXPLANATION OF THE PROBLEM 

 
In this section, we prove a theorem to show that the problem 

(1) - (2) is equivalent to an integral equation of fractional order.  

Theorem 1. Let g, k  and G  be continuous functions, 

m 1< < m,−    n 1< < n−    and < .    Then a function 

 m 1v C 0,a−  with ( )  C D v ( ) C 0,a     is a solution of 

fractional integro-differential equation (1) if and only if 

  
n 1

j j

10
j=0

v 1 (s)
v( ) = ds,

j! ( ) ( s)

− 

−


  +

   −
                          (4) 

 

satisfies the integral equation  

 
m 1

j j

j=n

v
( ) = I g( )

( j 1)

−
− −   + 

 −  +
  

0
I k( , ) G(u( ))d ,


−+                                        (5)  

   

where for n m,   C 0,a .  

Proof  Let  m 1v C 0,a−   be a solution of (1) which 

( )  C D v ( ) C 0,a .     Using Lemma 1, we conclude 

( )  C D v ( ) C 0,a .     Since g, k, G   and ( )C D v ( )    are 

continuous, we can apply the operator I  to both sides of Eq. 

(1). Thus using Proposition 1, we obtain  

 
( j)m 1

j

j=0

v (0)
v( ) = I g( )

j!

−
  +   

       ( )( )C

0
I k( , ) G D v( ) d .


 +                                         (6)  

 

Putting ( )C D v ( ) := ( ),      so  C 0,a ,   and we can 

apply the operator I   to both sides of this relation and using 

Proposition 1, we get  

 

( )

n 1
j j

10
j=0

v 1 (s)
v( ) = ds.

j! ( ) s

− 

−


  +

   −
   

 

From Eq. (6) and Lemma 1, we have  

 
m 1

jC C j

j=0

v
D v( ) = D I g( )

j!

−
  −

 
  +  

 
  

                   ( )( )C

0
I k( , ) G D v( ) d .


− +                       (7) 

 

Using Proposition 2, we get  

 
m 1

j j

0
j=n

v
( ) = I g( ) I k( , ) G( ( ))d ,

( j 1)

− 
− − −   +  +     

 −  +
   

 

and for n = m  the first term of the right hand of above relation 

is equal to zero. Conversely, assume that  C 0,a   is a 

solution of Eq. (5), we show that Eq.(4) satisfies in Eq. (1). 

Since  C 0,a ,   we can apply the operator C D    to both 

sides of Eq. (4), then from Proposition 1 and 2, we obtain  

 

( )C D v ( ) = ( ),     

 

and hence ( )  C D v ( ) C 0,a .    Applying I   to both sides of 

Eq. (5) and using Propositions 1 and 2, we get  

 

( )( )
m 1

j j C

0
j=0

v
v( ) = I g( ) I k( , ) G D v( ) d ,

j!

− 
    +  +           (8) 

  

where according to Proposition 2, we obtain  
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m 1 m 1
j jj j

j=n j=n

v v
I = .

( j 1) j!

− −
 −
 

  
 −  + 

   

 

By Propositions 1 and 2, the continuity of ( )C D v ( ),   

g, k, G  and applying C D  to both sides of Eq. (8), we have  

 

( ) ( )C C

0
D v ( ) = g( ) k( , ) G D v( ) d ,


   +      

 

and consequently ( )  C D v ( ) C 0,a .     Now we show that 

( j)

jv (0) = v ( j = 0,1,...,m 1).−  First using the property of the 

fractional calculus, we obtain  

 

( ) ( ) ( )( ) ( )( )
( j)

j j| I v | = | D I v | = | I v |  −    

                                

                 
j 1

0

1
= ( s) v(s)ds

( j)


− − −

  −   

                 
jCv
,

( j 1)

− 
 − +

 

 

for j = 0,1,...,m 1,−  thus  

 

( ) ( )
( j)

I v 0 = 0,   j = 0,1,...,m 1. −                         (9) 

 

Later on, for m =1 according to Eq. (8), we have 

  

( )( )C

0
0

v( ) = v I g( ) I k( , ) G D v( ) d .


   +  +      

 

Using the continuity of the operator I   on C[0,a]   and 

using Eq. (9), we find v( ) C[0,a]    and 

(0)

0v(0) = v  (v ( ) = v( ))  . 

Now for m 2  according to Eq. (8) and using Proposition 

1, we have  

 
m 2

j j m 1 m 1

m 1

j=0

v
v( ) = I v I g( )

j!

−
− − +

−
  + +   

        ( )( )m 1 C

0
I k( , ) G D v( ) d .


− +  +    

  

  

Thus from Lemma 1, we have m 1v( ) C [0,a],− 
( j)

jv (0) = v  

for j = 0,1,...,m 2,−  and  

 

( )( )(m 1) m 1 m 1 C

m 1
0

v ( ) = v I g( ) I k( , ) G D v( ) d .


− − + − + 

− +  +      

 

In the same way of Eq. (9), we can show that  

 

( )( )m 1 C m 1

0
I k( , t) G D v( ) d (0) = 0,      I g(0) = 0.


− +  − +   

    

 

Therefore, (m 1)

m 1v (0) = v−

−  and the proof is complete.  

 

 

4. EXISTENCE AND UNIQUENESS     
 

In this section, we study the existence and uniqueness 

theorem for solution of nonlinear fractional integro-differential 

equation (1). By Theorem 1, it is sufficient to show that Eq. (5) 

has a solution  C 0,a .  

According to Definition 2 and by changing the order of 

integration, we have  

 

0
( ) = h( ) L( , ) G( ( ))d ,



   +                            (10) 

 

where  

 

( )
m 1

1j j

0
j=n

v 1
h( ) = g( )d ,

( j 1) ( )

−  −−−  +  −  
 −  +  − 

   

 

and  

 

( )
11

L( , ) = k( , )d .
( )

 −−


   −   

 −  
 

 

We define  

 

0
L( )( ) = L( , ) G( ( ))d ,



                             (11) 

 

from Eqs. (10) and (11), we have  

 

 

= H L( ),    H . +                         (12) 

 

Now we define the operator T :→  as follows  

  

T = L( ) H,     ,H ,  +                         (13) 

 

from Eqs. (12) and (13), we obtain  

 

T = .   

 

So, we can rewrite equation (10) as follows  

 

0
( ) = h( ) L( , ) G( ( ))d T ( ).



   +                              (14) 

 

Moreover, let    denotes the class of those functions 

 ): 0, [0,1)  →  which satisfies the condition  

 

n n( ) 1, implies 0.  →  →                       (15) 

 

To prove the existence and uniqueness of solution for Eq. 

(1), we present the following theorem.   

Theorem 2. Consider the nonlinear Volterra integral 

equation (14) such that: 

  

(i) g :[0,a]→  and k : [0,a] [0,a] →  are continuous,  

 

(ii) G:→   is an increasing linear transformation and 

G( )
( ) =


  


, 0,   
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(iii) 
a

2

[0,a]
0

1
L ( , )d .sup

a


    

 

Then, the integral equation (14) has a unique fixed point   in 

 .   

Proof  Consider the iterative process  

 

n 1 n
0

( ) = h( ) L( , ) G( ( ))d


+   +       

        
nT ( ),  n = 0,1,...,                         (16) 

 

where 
0   is an appropriate initial guess. So, 

 

n n 1| T ( ) T ( ) |=−  −   n
0
L( , ) G( ( ))d


      

                                  
n 1

0
L( , ) G( ( ))d


−−                                    

   
n n 1

0
L( , ) G | ( ) ( ) | d


−     −     

   ( )
1

22

0
L ( , )d


    ( )
1

22

n n 1
0
G | ( ) ( ) | d .


−  −    

                                      

 

As the function G  is increasing then  

 

( ) ( )n n 1 n n 1G | ( ) ( ) | G d( , ) ,− −  −      

 

so, we obtain  

 

( )
a

2 2 2

n 1 n n n 1
0[0,a ]

d ( , ) L ( , )d G d( , ) asup+ −


 
        

 
                                    

( )2

n n 1G d( , ) .−    

 

Therefore 

 

( )
( )n n 1

n 1 n n n 1 n n 1

n n 1

G d( , )
d( , ) G d( , ) =  d( , )

d( , )

−

+ − −

−

 
      

 
                            

( )n n 1 n n 1= d( , ) d( , ),− −                             (17) 

 

and the sequence  n 1 nd( , )+    is decreasing and bounded. 

Thus there exists 0    such that n n 1 nd( , ) = .lim → +    If 

> 0 , then according to relation (17),  

 

( )n 1 n
n n 1

n n 1

d( , )
d( , ) ,    n =1,2,... ,

d( , )

+
−

−

 
   

 
 

 

and we conclude that  , because ( )n n n 1d( , ) =1lim → −  

whereas ( )n n n 1d( , ) = > 0lim → −    . So = 0   and therefore 

n n 1 nd( , ) = 0.lim → +   Now we show that  n  is a Cauchy 

sequence. Contrariwise, suppose that 

 

n m
m,n

d( , ) > 0.lim sup
→

                        (18) 

 

By the triangle inequality and relation (17), we have  

 

n m n n 1 n 1 m 1 m 1 md( , ) d( , ) d( , ) d( , )+ + + +     +   +     

                           

            ( )n n 1 n m n m m 1 md( , ) d( , ) d( , ) d( , ),+ +   +     +    

 

hence  

 

( )n m n m n n 1 m 1 md( , ) 1 d( , ) d( , ) d( , ).+ +
   −       +     

 

Thus, we have  

 

( )( )  
1

n m n m n n 1 m 1 md( , ) 1 d( , ) d( , ) d( , ) .
−

+ +   −     +    

 

Since n mm,n
d( , ) > 0limsup →
    and 

n n 1 nd( , ) = 0,lim → +   then 

  

( )( )
1

n m
m,n

1 d( , ) = ,limsup
−

→

−   +  

 

from the above relation, we conclude 

( )n mm,n
d( , ) =1limsup →

    and since , we obtain  

 

n m
m,n

d( , ) = 0.lim sup
→

   

 

This contradicts with (18), shows  n   is a Cauchy 

sequence in  . Since ( ),d  is a complete metric space, then 

 n  is a convergent sequence in  , that is  

 

n
n

,    = .lim
→

    

 

Now by taking the limit of both sides of (16), we have 

 

( )n 1 n
0n n

( ) = ( ) = h( ) L( , ) G( ( ))dlim lim


+
→ →

     +       

    n
0 n

= h( ) L( , ) G( ( ))dlim


→

 +       

    
0

= h( ) L( , ) G( ( )) d T ( ).


 +         

 

Thus, there exists a solution   such that T =  . It is 

clear that the fixed point of T  is unique.  

 

 

5. APPLICATION 

 

In this section, we are going to demonstrate main result 

contained in Theorem 2 by an example. Consider the following 

nonlinear fractional integro-differential equation 

 

( ) ( )C 1.75 2 C 0.25

0

1
D v ( ) = ln( )  D v ( ) d ,  [0,1],

9



  +      

( j)

jv (0) = v ,     j = 0,1.                       (19) 

 

Observe that the above equation is a special case of Eq. (1) 

with  

 
=1.75, = 0.25, m = 2, n =1, a =1,   
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2g( ) = ln( ),  k( , ) = ,  , [0,1],        

 

1
(G )( ) = ( ),  [0,1], C[0,1].

9
       

 

The functions g  and k  are continuous and G  is increasing 

linear transformation that satisfies in assumption (ii). To check 

assumption (iii), let's put 

 

1
L( , ) = d

3
( )
2




    − 


   

              
3 5

2 2
2 2 2

= ( ) ( ) .
3 5

  
 − − − 

  
 

  

Since 
1

2

[0,1]
0
L ( , ) d 1,sup

     then applying Theorem 2, 

we deduce that Eq. (19) has a unique solution in  . 
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